Advertisement

2020 Jaguar I-Pace Suspension Deep Dive | All kinds of weird and wonderful

2020 Jaguar I-Pace Suspension Deep Dive | All kinds of weird and wonderful



I’ve driven the Jaguar I-Pace a handful of times, and it always proves to be an enjoyable experience. In case you’re not up to speed, this is Jaguar’s dual-motor all-wheel drive all-electric SUV. It’s quick, it looks cool in a running shoe sort of way, and it delivers a decent 234 miles of range.

Sure, it has its faults, particularly when it comes to the infotainment and climate control layout. But the electric Jag’s smooth ride comfort and direct steering feel are clear strong points, and its handling stays nicely balanced and displays sharp reflexes as far as I’ve pushed it. That is to say, a strong pace, but nothing that would land me in jail.

The suspension plays a big role in all of this, of course. I wanted to see what they’d done, so I recently put an I-Pace HSE up on jackstands and took a look underneath. Electric powertrain notwithstanding, I found this to be an utterly weird and fascinating machine.

 

From this vantage it is easy to see the big air spring (yellow arrow). The use of this type of spring medium allows the I-Pace to run at different heights. It mostly runs at standard height, but can also lower the car at highway speeds to lessen aerodynamic drag. There’s an even lower mode to ease the loading of passengers and cargo, along with a raised-height off-road mode because, well, this is theoretically an SUV.

ADVERTISEMENT

It looks like it has a double wishbone front suspension, too, with a high-mount upper arm (green). But we can’t be sure until we move in closer.

 

With the wheel turned, we can see that this is a double wishbone front suspension in the sense that it has a single ball joint (green) at the bottom. There’s lots of nice-looking forged and hollow-cast aluminum bits and pieces, too. But it looks odd in some other respects. The lower arm (yellow), for example, seems to have a joint of some kind in it.

Meanwhile, near the top, you can see how the tall upright (or hub carrier, if you like) is curved (red) to provide tire and wheel clearance. Use the wheel studs as a reference point and you can imagine how the tire assembly will nestle into that area.

 

The shock absorber (green) runs up the middle of what is a doughnut-shaped air chamber. A very tall tower of a doughnut, but you get the idea. But you can’t call this a coil-over. Do I hear bag-over? Anyway, a position sensor (yellow) is connected to the upper arm so the height-control system can regulate itself properly.

 

A high-mount upper control arm layout offers several benefits and one drawback. On the plus side, the arm’s greater distance from the ground gives it extra leverage that reduces the loads in the arm itself, its ball joint, its two inner pivots (yellow) and the structure that supports them all. Also, any deflective movement in the pivot bushings will have much less of an angular effect on the geometry of the steering axis because of the increased separation distance from the lower ball joint. Finally, it’s easier for the designer to put the upper ball joint in the ideal spot because there are no other components competing for space, as there would be inside the wheel.

On the negative side, there’s isn’t enough clearance between the tire (which has magically reappeared for this photo only) and the upright to allow for the fitment of tire chains or oversized tires. You’re pretty much limited to winter tires, which is no bad thing from a cold-weather tire performance standpoint, if you ask me.

 

Here we can see that the lower wishbone is made up of two links: a lateral link (green) and a curved tension link (yellow). This still counts as a wishbone because it functions as one unit. There is but one ball joint (red), and the extra bolted joint is not a pivot. The two-piece construction facilitates the use of aluminum forgings, and offers better isolation of harshness, the rearward component of road impacts, while still providing the lateral rigidity needed for accurate steering and steady cornering.

 

The front stabilizer bar (yellow) follows the same curved path of the lower tension link. Its link (green) connects directly to the upright, which means the stabilizer bar will deflect on a 1-to-1 basis with respect to wheel motion.

Meanwhile, the bottom end of the air-spring and shock assembly attaches to an aluminum fork (red) that surrounds the front drive axle on its way to its connection point on the lower lateral link.

 

A felt wheel arch liner makes it hard to clearly see the pivot points for the stabilizer bar (yellow) and the lower tension link (green). But there’s no hiding the liner’s square hole that admits cool air in the general direction of the brake rotors (blue).

 

Here is another one of the I-Pace’s weird features. Do you see it? It has to do with the brakes (green) and the steering linkage (yellow). They’re both mounted behind the axle. That almost never happens. In 95% of cases you’ll find these two components on opposite sides of the drive axle so they don’t compete for space.

As for the lower lateral link, the spring/shock assembly is attached (red) inboard of the ball joint at what looks to be a 0.7-to-1 motion ratio. The effective ratio is slightly lower than that, though, because the spring and shock lean over at something like 20 degrees.

 

This picture illustrates why brakes and steering almost never share the same space. This is a single-piston sliding caliper (yellow), but the presence of the steering linkage means there simply isn’t room to fit any kind of Brembo big-brake upgrade unless they rework the whole thing and fit the calipers ahead of the axle.

 

And so the I-Pace has these modest brakes. It can get away with it because this is an electric vehicle. Almost all of your routine braking will be done magnetically, so these are mainly here for unexpected stops. This does, however, send a clear signal that this is not an all-out sports car or an Autobahn-burner like the all-electric Porsche Taycan, which has comically massive 10-piston calipers.

 

As if it were possible, things get even more distinctive at the rear. It starts off pretty clear-cut with a single camber link (yellow) at the top, but there’s unusual stuff lower down. It’s a type of multilink, but we can’t yet say what sort.