Advertisement

Watch NASA Test a 3D-Printed Rocket Engine Made for Deep Space Travel


Ever wondered what a rotating detonation rocket engine looks like?

It’s a pretty exciting time to be a space nerd right now. Agencies around the world recently came together to launch the most advanced telescope ever into orbit, startups are promising increasingly sci-fi means of traveling into orbit and NASA is hard at work getting humans back to the moon. That mission took a step closer to reality recently, when the American space agency began testing the rocket that could get us there.

For the past few months, NASA has been testing out an innovative new engine that produces more power than traditional rocket engines, while using less fuel. Called a rotating detonation rocket engine, or RDRE, the new engine could hold the key to the agency’s ambitions for deep space travel.

Read more

ADVERTISEMENT

Rocket engines have stayed pretty much the same for as long as there’s been space travel. There’s a combustion chamber where fuel is ignited, and a nozzle that directs the exhaust gasses and energy in the opposite direction from wherever you want to go.

But the RDRE, which was first proposed in the 1950s, works quite differently. Instead of using combustion to burn fuel and change chemical energy into heat energy, a RDRE uses detonation to speed up the energy transfer without the need for oxygen to keep the fire burning.


Rotating Detonation Rocket Engine Test at Marshall Space Flight Center

This kind of engine can also extract more energy from its fuel, and doesn’t require a separate oxygen tank to support combustion in the vacuum of space. Aspects like this make this more powerful, more efficient engine ideal for lengthy space missions.

But RDRE engines are notoriously tricky to build, and scientists around the world have been working to optimize this type of engine for space travel (and even high-speed air travel) for decades. Now, NASA has successfully tested its own RDRE, which could one day power us to the moon and further into space.